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SUMMARY  
Forest canopy gaps are an important indicator of ecosystem dynamics. Gap 

sizes can vary because of several agents, and the spatial distribution is related to 
abiotic factors. The interest in the study of this forest attribute is old, but the 
difficulties to detect these areas in situ and with the use of satellite imagery 
hinder this research approach. Thus, we explore the use of high spatial resolution 
images obtained with RGB boarded in a multirotor unmanned aerial vehicle 
(UAV) to evaluate the best method to mapping the forest canopy gaps in Brazil. 
For this, were utilized the pixel- and object-based approaches, and the algorithms 
Random Forest (RF) and Support Vector Machine (SVM). The results showed 
that the ortophotomosaics can overcome the disadvantages of study the forest 
canopy gaps from conventional methods and reduce the complexity and costs to 
obtain reliable data of forests remnants. The RF and the pixel-based classification 
were the best combinations, with an overall accuracy (OA) of 93% in the period 
of study. However, the SVM presented a satisfactory accuracy to classify the 
forest canopy gaps, with the precision of user (PU) ranging from 86% to 98% and 
measure F from 85% to 96%. Therefore, was confirmed the potential of low-cost 
UAVs boarded with RGB sensors in this research proposal, and the results are 
promising for future studies. 

Key words: Structure from Motion, Random Forest, Support Vector 
Machine, Forest Remnant, Conservation, Brazil 

 

INTRODUCTION 

Gaps in forests canopies represent the result of ecological disturbances and 

are a key element for understanding forest structure and dynamics (Karki and 

Hallgren, 2015; Mohammadi et al., 2021). The formation of these openings in the 

forests varies in size because of several agents, such as the wind, diseases, fire, 
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and cyclones (Bazzaz, 1983). Nevertheless, the spatial distribution of central 

abiotic factors also plays an important role in the regulation of the formation of 

the gaps (Getzin et al., 2014). 

Therefore, the detection of these areas is an important alternative to 

monitor the forests remnants because the gaps influence the composition and 

species richness from microhabitats. Thus, it affects the quality and quantity of 

available resources, such as light (Kuuluvainen and Linkosalo, 1998), which 

promotes the natural regeneration of trees and the diversity of understory biota 

(Burton et al., 2014).  

The interest of ecologists in understanding these processes and recognizing 

the dynamics involved is old (Fisch and Ponzoni, 1995), but the spatial resolution 

of the satellite’s images and the difficulty of displacement on the ground due to 

the disturbance of these areas, restrict the studies. 

In this scenario, unmanned aerial vehicles (UAVs) have become an 

affordable alternative, capable of providing the flexibility and resolution 

necessary to accurately map the forests (Fassnacht et al., 2003; Chianucci et al., 

2015). The combination of these platforms with computer vision algorithms 

ensures the generation of high-quality products, such as orthophotomosaics and 

three-dimensional (3D) models, which have the potential to detect and identify 

flora classes (Felix et al., 2021). Nonetheless, the UAVs can be equipped with 

different sensors, capable of acquiring information from different portions of the 

electromagnetic spectrum, like the visible bands (RGB), red edge, and near-

infrared (NIR) (Grybas and Congalton, 2021). 

According to Castillo et al. (2012), the difference in the use of UAVs is the 

increase in accessibility, performance, and precision in the acquisition of data and 

orthoimages in high resolutions. Because of this methodological configuration, 

the limitations of traditional remote sensing techniques are overcome, mainly 

about significant errors in volumetric calculations. 

Studies such as that of Wallace et al. (2016), Prošek and Šímová, (2019), 

and Olivetti et al. (2020), have already recognized this potential and achieved 

satisfactory results in the use of UAVs in different environmental contexts. 

However, precision agriculture is still considered the area with the greatest 

potential for its application (Jorge et al., 2014). 

Thus, in this study we aimed to demonstrate how images acquired with 

RGB sensor carried on a low-cost UAV can be used for forests gap studies; two 

different classification approaches (pixel- and object-based) and the algorithms 

Random Forest (RF) and Support Vector Machine (SVM) were utilized. 

 

MATERIAL AND METHODS 
The study area is in the municipality of Lavras, state of Minas Gerais 

(Figure 1). Forest remnant has 2.81 ha and represents a typical Cerrado (Savanna) 

physiognomy, with 19 families, 38 species, and 38 genera (H’ = 3.28), with the 

exclusive occurrence of individuals such as Bowdichia virgiloides, Dalbergia 

miscolodium, and Qualea grandiflora (Pereira et al., 2010). 
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Figure 1. Location map of the study area in the municipality of Lavras, Brazil. 

 
According to the Köppen classification system, the climate of the study 

area is mesothermal tropical (Cwb) (Sparovek et al., 2007). The average 

elevation is 918 m, and the mean annual precipitation is 1529.7 mm, with soil 

classified as dystroferric Red Latosols (FEAM, 2010). 

The region is part of the upstream portion of the Rio Grande watershed and 

makes up the geomorphological Atlantic Plateau unit in Varginha Complex 

crystalline rocks (CPRM 2014). The vegetation is characterized by the transition 

of the Atlantic Forest to the Cerrado (Savanna), with the presence of the remnants 

of Montana Semi Deciduous Forest (Oliveira-Filho et al., 2001). 

 

PROCEDURE 
1. Unmanned aerial vehicle (UAV): 

We used the multirotor Phantom 3 (Professional) with an RGB sensor, 

camera model Sony EXMOR ½.3", which captures images in real colour with 

lens 94° FOV 20 mm (Figure 2). 

Considering that the occurrence of gaps is seasonal, being more frequent 

during the rainy season when the fall of trees and branches is also amplified by 

the strong winds (Sarukhán, 1978), two flights were scheduled. One to run in the 

middle of the dry season (24 August 2017) and the other after the rainy season (1 

February 2018), at a height of 60 m and with 80% forward and side overlap. The 

grid adopted was 50 x 50 m and the mapping was planned and executed using the 

GCS (Ground Control Station) Pix4DCapture.  
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Figure 2. DJI Phantom 3 equipped with an RGB sensor. 

 

The images were processed using the commercially available structure-

from-motion (SfM) Agisoft Photoscan Professional® v1.2.7 software with the 

configurations: “Align Photos” = high; “Accuracy” = generic / pair pre-selection 

and 40 000 points features per image; “Tie points” = 10 000. No ground control 

points (GCPs) were used for image orthorectification. 

 

2. Segmentation: 

Segmentation considers the radiometric information of the pixels, the 

semantic properties of each segment, and other background information that 

describes the connection of adjacent pixels, such as the intensity, texture, shape, 

and dimensional relations (De Luca et al., 2019). 

Thus, the object-based image analysis (OBIA) aimed to group pixels into 

homogeneous classes, allowing the use of multiple descriptive statistics and 

contextual information during the classification process (Blaschke, 2010). 

In this study, the OBIA method was based in the multi-resolution 

segmentation algorithm implemented on eCognition 8.3. After iterative tests, the 

parameters selected were: “scale” = 40; “shape” = 0.3 and “compactness” = 0.8. 

Since the texture features are one of the important characteristics used for 

identifying objects (Haralick, 1979), the measure GLCM was implemented. Thus, 

after the segmentation, the mean, the standard deviation, the homogeneity, the 

entropy of the Red band, the maximum difference, and the brightness were 

extracted for each sample, resulting in 12 attributes. Therefore, 200 objects were 

selected as training data, which were grouped into 5 classes: (1) bare land, (2) 

branches, (3) canopies, (4) gaps, and (5) shadows. 

 

 



Comparing pixel- and object- based forest canopy gaps classification using UAV imagery 23 

3. Pixel-based approach: 

Reference polygons were selected by visual interpretation of the 

ortophotomosaics, using the true colour composition. A total of 200 reference 

polygons were selected as training samples to five classes described in section 2. 

Nonetheless, the variables extracted for each sample were only the mean of the 

bands, resulting in three attributes. 

 

4. Ortophotomosaics classification: 

The RF algorithm (Breiman, 2001) is a non-parametric and robust 

algorithm used for images classification. A couple of studies presented 

satisfactory results on the employment of RF in land use and species 

classification approaches (Belgiu and Dragut, 2016). 

In this study, the RF was grown with the parameters “ntree” = 500 and 

“mtry” with the square root of the number of the variables included in the model 

as described in sections 2 and 3. 

On the other hand, the SVM (Cortes and Vapnik, 1995) are based on 

statistical learning theory, defining the optimal hyperplane as a linear decision 

function between the vectors of two classes (Deur et al., 2020). We used the 

radial basis function kernel in this study. 

Thus, each singular date of imagery was classified in R open-source 

statistical programming environment, and the training samples were randomly 

divided into training (70%) and validation (30%) datasets. 

The accuracy of these classifications was assessed using the error matrix 

approach. After, were obtained the overall accuracy (OA), the accuracy of 

classes, and the kappa index (Congalton, 1991). For each matrix, the precision of 

the classes was determined by calculating the precision of user (PU) and producer 

(PP) (Story and Congalton, 1986), and to summarize PU and PP in a single 

metric, measure F was calculated (Equation 1). 

 

𝐹 = 2 ∗  
(𝑃𝑈∗𝑃𝑃)

(𝑃𝑈+𝑃𝑃)
                  (Equation 1) 

 

 

RESULTS AND DISCUSSION 

UAV imagery reached 2 cm spatial resolution, which facilitates the 

detection of classes by visual interpretation using the true colour composition. 

The highest pixel-based classification accuracy was obtained for the RF 

algorithm on both dates, with OA = 93%, and kappa = 0.88 and 0.90, respectively 

(Table 1 and Table 2). Concerning the forest gaps, the highest accuracy was 

obtained for RF (PU ranged from 92% to 94% and the measure F ranging from 

93% to 95%). 

Although the SVM presented the worst result than RF in the classification 

accuracy for forest gaps (PU ranged from 92% to 98% and the measure F ranging 

from 90% to 96%), the performance of the algorithm was satisfactory. 
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Table 1. Accuracy assessment of pixel-based classification with RF and SVM on 

24 August 2017. 

RF 

Prediction B.L.  Branches Canopies Gaps Shad. Total PU F 

Bare land 975 28 3 15 46 1 067 91% 85% 

Branches 75 10 298 664 53 7 11 097 93% 92% 

Canopies 13 908 25 331 161 29 26 442 96% 96% 

Gaps 65 91 171 39 540 3 089 42 956 92% 95% 

Shadows 83 63 3 532 1 638 2 319 70% 46% 

Total 1 211 11 388 26 172 40 301 4 809 OA = 93% 

Kappa = 0.88 PP 80% 90% 97% 98% 34% 

SVM 

Bare land 4 014 453 1 768 340 0 6 575 96% 93% 

Branches 35 8 559 6 642 610 0 15 846 86% 47% 

Canopies 42 15 924 21 952 413 0 38 331 67% 69% 

Gaps 294 926 251 18 403 0 19 874 92% 90% 

Shadows 0 0 0 900 2 345 3 245 72% 84% 

Total 4 385 25 862 30 613 20 576 2 345 OA = 35% 

Kappa = 0.50 PP 91% 33% 71% 89% 100% 

PP: precision of producer; PU: precision of user; and F: measure F. 

 

Table 2. Accuracy assessment of pixel-based classification with RF and SVM on 

1 February 2018.  
RF 

Prediction Bare land Branches Canopies Gaps Total PU F 

Bare land 3 967 60 29 79 4 135 96% 93% 

Branches 110 23 821 1 590 417 25 938 92% 92% 

Canopies 59 1 491 28 649 556 30 755 93% 93% 

Gaps 249 490 345 18 714 19 798 94% 94% 

Total 4 385 25 862 30 613 19 766 OA = 93% 

Kappa = 0.90 PP 90% 92% 93% 94% 

SVM 

Bare land 951 9 658 6 370 391 17 370 5% 9% 

Branches 54 20 661 4 653 233 25 601 80% 72% 

Canopies 11 942 24 940 4 35 897 69% 60% 

Gaps 18 33 142 11 565 11 758 98% 96% 

Total 1 034 31 294 46 105 12 193 OA = 31% 

Kappa = 0.17 PP 92% 66% 54% 95% 

 PP: precision of producer; PU: precision of user; and F: measure F. 

 

In the case of the OBIA classification, the RF also showed the best results 

in both dates and in the detection of the forest gaps (Table 3 and 4). The OA 

ranging from 78% to 88%, the PU from 85% to 89%, with a measure F of 96% 

and 90%. 
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Table 3. Accuracy assessment of object-based classification with RF and SVM on 

24 August 2017. 

RF 

Prediction B.L. Branches Canopies Gaps Shadows Total PU F 

Bare land 0 0 0 0 0 0 100% 0% 

Branches 1 12 3 0 0 16 75% 79% 

Canopies 1 5 17 0 0 23 74% 85% 

Gaps 0 0 0 18 3 21 85% 96% 

Shadows 0 0 0 0 0 0 100% 0% 

Total 2 17 20 18 3 OA = 78% 

Kappa = 0.68 PP 0% 70% 85% 100% 0% 

SVM 

Bare land 0 0 0 0 0 0 100% 0% 

Branches 0 8 2 0 0 10 80% 87% 

Canopies 2 9 18 0 0 29 62% 66% 

Gaps 0 0 0 18 3 21 86% 89% 

Shadows 0 0 0 0 0 0 100% 0% 

Total 2 17 20 18 3 OA = 73% 

Kappa = 0.61 PP 100% 95% 72% 93% 100% 

PP: precision of producer; PU: precision of user; and F: measure F. 
 

Table 4. Accuracy assessment of object-based classification with RF and SVM on 

1 February 2018.  

RF 

Prediction Bare l. Branches Canopies Gaps Total PU F 

Bare land 2 0 0 0 2 100% 66% 

Branches 0 16 0 0 16 100% 94% 

Canopies 1 1 20 2 24 89% 92% 

Gaps 1 1 1 15 18 93% 90% 

Total 4 18 21 17 OA = 88% 

Kappa = 0.83 PP 50% 89% 95% 88% 

SVM 

Bare land 1 0 0 0 1 100% 40% 

Branches 0 6 3 0 9 93% 48% 

Canopies 2 12 18 4 36 54% 66% 

Gaps 1 0 0 13 14 97% 85% 

Total 4 18 21 60 OA = 63% 

Kappa = 0.46 PP 25% 33% 86% 76% 

PP: precision of producer; PU: precision of user; and F: measure F. 
 

These results indicating that the best approach of the study was the pixel-

based classification with the RF, and the RGB sensor is a feasible alternative to 

monitor the forest dynamics (Figure 3). 
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Figure 3. Example subsets of pixel-based classification with the Random 

Forest algorithm in both dates of study. 

 

According to Deur et al. (2020), the OBIA was the best method to work 

with high spatial products, but as demonstrated in our results the performance 

was lower than the pixel-based method. A couple of studies also indicated that 

the SVM algorithm is the best alternative to OBIA classification (Belgiu and 

Dragut, 2016), which wasn’t confirmed in this research because the SVM showed 

the worst results obtained with the two classification methods. 

Despite that, our results confirmed the potential reported to other studies in 

the evaluation of forest canopy gaps with UAVs (Bagaran et al., 2018, Bourgoin 

et al., 2020), and reinforce the capacities of low-cost equipment configuration in 

these interest front.  

The spatial resolution of orthophotomosaics allowed the identification of a 

significant number of small gaps (≤ 1m
2
), especially in February 2018. In the last 

years, the discussion on the minimal gap size restricts the threshold from 1 m
2
 to 

5 m
2 

(Nieschulze et al., 2012, Boyd et al., 2013). Therefore, our results point to 

the importance of a better evaluation about the metrics adopted in the studies of 

forest canopy gaps from remote sensing. However, we agree with Tanaka and 

Nakashizuka (1997) and Getzin et al. (2014), that the monitoring of small gaps 
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should be analyzed in the long-term, because the disturbances around these areas 

cannot be explained simply as gap expansion but should be considered the 

regeneration and successional dynamics of the understory. 

Thus, we recognize the promising results obtained with the use of UAVs, 

still, we emphasize that the use of these technologies does not replace the 

evaluation of these areas in situ. In the case of Brazil, with the recent availability 

of pan sharpened very high spatial resolution of CBERS-4A satellite (2 m), as 

well as the free Planet satellite imagery (3-5 m), the integrated use of these 

platforms can allow the monitoring of long-term forest dynamics. Furthermore, 

this configuration offers a great opportunity to overcome the satellite’s limitations 

in other areas and can be an alternative to evaluate the forest canopy gaps with 

the climate changes. 

Last, this research compared the performance of two methods to 

classification and identifying forest attributes, but we do not disqualify the use of 

the SVM or the OBIA method for future studies. After all, the algorithm and 

classification method are historically consolidated and can contribute to several 

mapping approaches. Because, as confirmed in Table 1 and Table 2, the SVM 

presented a highest accuracy for gaps classification with the pixel-based method. 

Thus, our results represent directions for future researchers aiming the 

mapping and monitoring forests attributes, especially in Tropical areas. 
 

CONCLUSIONS 

The use of unmanned aerial vehicles to detect and monitoring forest 

dynamics can reduce the costs and provide promising results in mapping the 

forest canopy gaps. RGB sensor represented a feasible alternative to overcome 

the limitations of satellite data, but the combined use of these platforms provides 

a great opportunity to maintain the landscape. The Random Forest algorithm 

confirmed its robustness and capabilities to use in different contexts. Nonetheless, 

Support Vector Machine also represents an alternative for future research aiming 

at the study of forest canopy gaps. 
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